Redis 集群

Redis 集群是一个提供在多个Redis间节点间共享数据的程序集。

Redis集群并不支持处理多个keys的命令,因为这需要在不同的节点间移动数据,从而达不到像Redis那样的性能,在高负载的情况下可能会导致不可预料的错误.

Redis 集群通过分区来提供一定程度的可用性,在实际环境中当某个节点宕机或者不可达的情况下继续处理命令. Redis 集群的优势:

  • 自动分割数据到不同的节点上。
  • 整个集群的部分节点失败或者不可达的情况下能够继续处理命令。

Redis 集群的目标

Redis 集群是 Redis 的一个分布式实现,主要是为了实现以下这些目标(按在设计中的重要性排序):

  • 在1000个节点的时候仍能表现得很好并且可扩展性(scalability)是线性的。
  • 没有合并操作,这样在 Redis 的数据模型中最典型的大数据值中也能有很好的表现。
  • 写入安全(Write safety):那些与大多数节点相连的客户端所做的写入操作,系统尝试全部都保存下来。不过公认的,还是会有小部分(small windows?)写入会丢失。
  • 可用性(Availability):在绝大多数的主节点(master node)是可达的,并且对于每一个不可达的主节点都至少有一个它的从节点(slave)可达的情况下,Redis 集群仍能进行分区(partitions)操作。

Redis 集群的数据分片

Redis 集群没有使用一致性hash, 而是引入了 哈希槽的概念.

Redis 集群有16384个哈希槽,每个key通过CRC16校验后对16384取模来决定放置哪个槽.集群的每个节点负责一部分hash槽,举个例子,比如当前集群有3个节点,那么:

  • 节点 A 包含 0 到 5500号哈希槽.
  • 节点 B 包含5501 到 11000 号哈希槽.
  • 节点 C 包含11001 到 16384号哈希槽.

这种结构很容易添加或者删除节点. 比如如果我想新添加个节点D, 我需要从节点 A, B, C中得部分槽到D上. 如果我想移除节点A,需要将A中的槽移到B和C节点上,然后将没有任何槽的A节点从集群中移除即可. 由于从一个节点将哈希槽移动到另一个节点并不会停止服务,所以无论添加删除或者改变某个节点的哈希槽的数量都不会造成集群不可用的状态.

Redis集群的主从复制模型

为了使在部分节点失败或者大部分节点无法通信的情况下集群仍然可用,所以集群使用了主从复制模型,每个节点都会有N-1个复制品.

在我们例子中具有A,B,C三个节点的集群,在没有复制模型的情况下,如果节点B失败了,那么整个集群就会以为缺少5501-11000这个范围的槽而不可用.

然而如果在集群创建的时候(或者过一段时间)我们为每个节点添加一个从节点A1,B1,C1,那么整个集群便有三个master节点和三个slave节点组成,这样在节点B失败后,集群便会选举B1为新的主节点继续服务,整个集群便不会因为槽找不到而不可用了

不过当B和B1 都失败后,集群是不可用的.

Redis 一致性保证

Redis 并不能保证数据的强一致性. 这意味这在实际中集群在特定的条件下可能会丢失写操作.

第一个原因是因为集群是用了异步复制. 写操作过程:

  • 客户端向主节点B写入一条命令.
  • 主节点B向客户端回复命令状态.
  • 主节点将写操作复制给他得从节点 B1, B2 和 B3.

主节点对命令的复制工作发生在返回命令回复之后, 因为如果每次处理命令请求都需要等待复制操作完成的话, 那么主节点处理命令请求的速度将极大地降低 —— 我们必须在性能和一致性之间做出权衡。 注意:Redis 集群可能会在将来提供同步写的方法。 Redis 集群另外一种可能会丢失命令的情况是集群出现了网络分区, 并且一个客户端与至少包括一个主节点在内的少数实例被孤立。

举个例子 假设集群包含 A 、 B 、 C 、 A1 、 B1 、 C1 六个节点, 其中 A 、B 、C 为主节点, A1 、B1 、C1 为A,B,C的从节点, 还有一个客户端 Z1 假设集群中发生网络分区,那么集群可能会分为两方,大部分的一方包含节点 A 、C 、A1 、B1 和 C1 ,小部分的一方则包含节点 B 和客户端 Z1 .

Z1仍然能够向主节点B中写入, 如果网络分区发生时间较短,那么集群将会继续正常运作,如果分区的时间足够让大部分的一方将B1选举为新的master,那么Z1写入B中得数据便丢失了.

注意, 在网络分裂出现期间, 客户端 Z1 可以向主节点 B 发送写命令的最大时间是有限制的, 这一时间限制称为节点超时时间(node timeout), 是 Redis 集群的一个重要的配置选项。

实现的功能子集

Redis 集群实现了所有在非分布式 Redis 版本中出现的处理单一键值(key)的命令。那些使用多个键值的复杂操作, 比如 set 里的并集(unions)和交集(intersections)操作,就没有实现。通常来说,那些处理命令的节点获取不到键值的所有操作都不会被实现。

Redis 集群协议中的客户端和服务器端

在 Redis 集群中,节点负责存储数据、记录集群的状态(包括键值到正确节点的映射)。集群节点同样能自动发现其他节点,检测出没正常工作的节点, 并且在需要的时候在从节点中推选出主节点。

为了执行这些任务,所有的集群节点都通过TCP连接(TCP bus?)和一个二进制协议(集群连接,cluster bus)建立通信。 每一个节点都通过集群连接(cluster bus)与集群上的其余每个节点连接起来。节点们使用一个 gossip 协议来传播集群的信息,这样可以:发现新的节点、 发送ping包(用来确保所有节点都在正常工作中)、在特定情况发生时发送集群消息。集群连接也用于在集群中发布或订阅消息。

键分布模型

键空间被分割为16384槽,事实上集群的最大节点数量是16384个

所有主节点都负责16384个哈希槽中的一部分,当集群处于稳定状态时,集群中没有在执行重配置操作,每个哈希槽都只由一个节点进行处理。

以下是用来把键映射到哈希槽的算法

HASH_SLOT=CRC16(key)mod 16384

集群节点属性

集群中,每个节点都有一个唯一的名字,节点名字是一个16进制表示的160bit随机数,这个随机数是节点第一次启动时获得的,节点会把它的ID保存在配置文件里,以后永远使用这个ID,只要这个节点配置文件没有被系统管理员删除掉。

节点ID是用于在整个集群中标识每个节点。一个给定的节点可以在不改变节点ID的情况下改变IP和地址。集群能检测到IP或端口的变化。

集群拓扑结构

Redis 集群是一个网状结构,每个节点都通过 TCP 连接跟其他每个节点连接。

在一个有 N 个节点的集群中,每个节点都有 N-1 个流出的 TCP 连接,和 N-1 个流入的连接。 这些 TCP 连接会永久保持,并不是按需创建的。

集群在线重配置

Redis 集群支持在集群运行过程中添加或移除节点。实际上,添加或移除节点都被抽象为同一个操作,那就是把哈希槽从一个节点移到另一个节点。

  • 向集群添加一个新节点,就是把一个空节点加入到集群中并把某些哈希槽从已存在的节点移到新节点上。
  • 从集群中移除一个节点,就是把该节点上的哈希槽移到其他已存在的节点上。
  • 所以实现这个的核心是能把哈希槽移来移去。从实际角度看,哈希槽就只是一堆键,所以 Redis 集群在重组碎片(reshard)时做的就是把键从一个节点移到另一个节点。

失效检测

Redis 集群失效检测是用来识别出大多数节点何时无法访问某一个主节点或从节点。当这个事件发生时,就提升一个从节点来做主节点;若如果无法提升从节点来做主节点的话,那么整个集群就置为错误状态并停止接收客户端的查询。

每个节点都有一份跟其他已知节点相关的标识列表。其中有两个标识是用于失效检测,分别是 PFAIL 和 FAIL。PFAIL 表示可能失效(Possible failure),这是一个非公认的(non acknowledged)失效类型。FAIL 表示一个节点已经失效,而且这个情况已经被大多数主节点在某段固定时间内确认过的了。

http://www.redis.cn/topics/cluster-spec.html

http://www.redis.cn/topics/cluster-tutorial.html